Evolutionary dynamics of FMDV in buffalo:
 a tale of quasi-species, selection, recombination and persistence

Luca Ferretti

with Eva Pérez-Martín, Fuquan Zhang, Francois Maree, Paolo Ribeca and Bryan Charleston

GFRA, Seoul, 27/10/2017

Same experiment presented by Eva Pérez-Martín in the previous talk

Aim: study within-host evolution and genetic variability post inoculation

Sequencing of SAT1 only (persistent serotype)

Inoculum:

- deep next-generation sequencing of capsid region
- average coverage ~30000

Virus from micro-dissections of 3 buffalos (2 at 35 dpi , 1 at 400 dpi):

- Sanger sequencing of VP1
- viruses from dorsal soft palate, palatine and pharyngeal tonsils (both epithelium and germinal center)

Furthermore, Sanger/NGS of probang and tonsil swabs from multiple individuals

Quasi-species structure and selection

Quasi-species structure and selection

Inoculum:

Inoculum:

Quasi-species:

 population of viruses with similar sequences (differing only by a few mutations) evolving under high mutation ratesExpectation: either identical viruses, or a single quasi-species

Inoculum:

 two quasi-species (plus recombinants)

Two main quasi-species with 3% sequence divergence

Large fraction of recombinant sequences

Inoculum: two quasi-species (plus recombinants)

Recombinant

VP1 sequence of major quasi-species, except for 2 nonsynonymous variants corresponding to minor quasi-species

Strong post-inoculation changes in quasi-species frequencies

Strong post-inoculation changes in quasi-species frequencies

Strong post-inoculation changes in quasi-species frequencies

Quasi-species structure across animals and tissues

Inoculum

Quasi-species structure across animals and tissues
$\left.\begin{array}{l}1.0 \\ 0.8- \\ 0.6- \\ 0.4- \\ 0.2 \\ 0\end{array}\right]$

Inoculum

Quasi-species structure across animals and tissues

Quasi-species structure across animals and tissues

${ }_{0}^{1.0} \square \square$ across all animals and tissues

Quasi-species structure across animals and tissues

0.8 Consistent quasi-species frequencies post inoculation

 across all animals and tissues

Recombination

Recombination

Recombinants in buffalos

Recombinants in buffalos

Recombinants in buffalos

Increase in recombinants and sequence diversity with time

Recombination occurs during viral replication

Increase in recombinants and sequence diversity with time

Increase in recombinants and sequence diversity with time

Recombination occurs during viral replication
Absolute recombination rates in VP1: acute phase:
~ 0.2 per base per year persistent phase:
~ 0.005 per base per year

Increase in recombinants and sequence diversity with time

Recombination occurs during viral replication
Absolute recombination rates in VP1: acute phase:
~ 0.2 per base per year
persistent phase:
~ 0.005 per base per year
 is about 40 times slower than replication during acute phase of infection

Recombination map of capsid genes

Recombination map of capsid genes and mosaic structure inside VP1

Recombination map of capsid genes and mosaic structure inside VP1

Recombination map of capsid genes and mosaic structure inside VP1

Position in 1D sequence - Linkage disequilibrium

Genetic diversity and differentiation

FMDV genetic diversity within animals, tissues and locations in tissues

FMDV genetic diversity

 within animals, tissues and locations in tissues

FMDV genetic diversity

 within animals, tissues and locations in tissues

Genetic differentiation

between animals, tissues and locations in tissues

Genetic differentiation

between animals, tissues and locations in tissues

Genetic differentiation

between animals, tissues and locations in tissues

Genetic differentiation

between animals, tissues and locations in tissues

Summary: surprises from deep sequencing

- Interesting and non-trivial quasi-species structure

How often does it occur? Relevant for viral dynamics/evolution?

- Systematic selection on quasi-species during acute infection
- Within-host recombination in capsid genes

Why not observed in large-scale phylogenies?

- Replication in carrier state is ~ 40 times slower than during acute infection
- Similar levels of genetic diversity and low differentiation between animals/tissues

Genetic diversity was present or originated during acute infection phase

Acknowledgments

Collaborators:
Eva Pérez-Martín
Fuquan Zhang
Francois Maree
Paolo Ribeca
Bryan Charleston

The Pirbright Institute:
Nick Knowles
Antonello Di Nardo

